
CMPSCI 677 Distributed Operating Systems Spring 2023

Lecture 24: May 08
Lecturer: Prashant Shenoy Scribe: Jeff Mao, Riya Singh (Spring 2023)

24.1 NFS (contd)

24.1.1 Recap

NFS has a weak consistency model. Whenever a client application user modifies a file, the changes get written
to the cache at the client machine and later on the client can send the changes to the server. Meanwhile, if
the server receives a request for the same file from some other user it will send stale content.

24.1.2 Client Caching: Delegation

Figure 24.1: Delegation

NFS supports the concept of delegation as part of caching. The client receives a master copy of the file to
which the client can make updates. Upon completion, the client can send the file back to the server. This
is similar to the concept of upload/download model. Thus, the server is delegating the file to the client so
that the client can have a local copy. If another client tries to access the file, the server recalls the delegation
given to previous client. The previous client returns the file to the server and then the server uses the old
model where multiple clients can access the file by read/write requests to the sever.

Question: When does the server decide to delegate the file?
Answer: Since this feature is stateful, it is only present in version 4. If the server is serving only one client
then the server can delegate the file. Otherwise since the server is not the current owner of the file, the
server can not delegate and thus has to use the old model. For example, files in the user’s home directory
can be delegated, whereas binaries of application programs can not be delegated as multiple users might
access them.

Question: Is there a way to periodically update the server as in case of client failure the files may get lost?
Answer: It is possible for the client to flush the changes to the server in the background while it still holds
the master copy.

24-1



24-2 Lecture 24: May 08

24.1.3 RPC Failures

Figure 24.2: RPC Failures

For RPCs being used over TCP, TCP will take care of retransmissions between client and server. For RPCs
over UDP, client and server can decide how to deal with lost requests and replies. Every RPC request is
associated with an ID. Upon receiving an RPC request from the client, the server will maintain the request
and response for that request in its cache. If the client resends the request and the reply was lost, the server
will simply send the reply from the cache, instead of executing it again.

Question: What is the utility of UDP over TCP?
Answer: UDP is faster than TCP as there is three-way handshake in TCP. In LANs, where probability of
loss is low, RPCs can be sent over UDP. Over WANs or noisy LANs TCP may be preferred.

Question: For how long can the reply be kept in the cache?
Answer: It depends on the application. Practically, after some unsuccessful tries within an hour, the client
may assume that the server is down. So the replies can be cached for some hours.

Question: Is caching reply specific to some version of NFS?
Answer: It is not specific to some verison of NFS. In NFS v1, there was no concept of RPCs over TCP.
Thus, this method was used for RPCs over UDP. Currently, with the advent of RPCs over TCP, this method
is not needed to be used.

Question: Is the cache needed only so that the requests are idempotent?
Answer: Yes. For example, if requests are changing files, it might incur problems if they are not idempotent
and if requests are needed to be idempotent the cache is required.

24.1.4 Security

Versions 1, 2 and 3 of NFS relied on a simple security model. Every request is sent with user ID and
group ID. The server checks for the file permissions on the basis of user ID and server ID. This ensures only
authenticated users can access the file. One drawback of this is that the channel between client and server,
however, is not still secure. If an adversary intercepts the network traffic, the contents of a secure file may
be exposed. In version 4, the concept of secure RPCs was introduced. Every RPC client stub sends the
request to the security layer which encrypts the request before sending. Thus, file contents can not be read
on the network.

Question: Client can send user ID and group ID, but how does the server know if it is authentic?
Answer: As long as the server trusts the OS on the client the server knows the user ID and group ID are
authentic. However, if the OS is corrupted/hacked the server can not trust the client



Lecture 24: May 08 24-3

Figure 24.3: Secure RPCs

24.1.5 Replica Servers

There may be multiple servers serving different set of files. Version 4 allows the files to be replicated. Client
can make request for accessing files from any of the replicas. NFS provides implementation of maintaining
consistency between the replicated servers.

24.2 Coda Overview

24.2.1 DFS designed for mobile clients

- Nice model for mobile clients who are often disconnected

• Use file cache to make disconnection transparent

• At home, on the road, away from network connection

24.2.2 Coda supplements file cache with user preferences

- E.g., always keep this file in the cache
- Supplement with system learning user behavior

24.2.3 How to keep cached copies on disjoint hosts consistent?

- In mobile environment, ”simultaneous” writes can be separated by hours/days/weeks



24-4 Lecture 24: May 08

Question: What is coda using a remote access model or an upload download model?
Answer: It’s a little bit of both. When you’re connected, your changes can be uploaded or sent to the server
immediately, but you always have a cash. So when you are disconnected, you’re essentially just working
with whatever files subcaste, in which case you it looks like an upload download model. So the answer is it
actually depends on whether you’re the state of.

24.2.4 File Identifiers

Figure 24.4: Coda architecture

• Each file in Coda belongs to exactly one volume. A volume could be a disk or a partition of a disk.

– Volume may be replicated across several servers. Identifiers include volume ID and file handle.

– Multiple logical(replicated) volumes map to the same physical volume

– 96 bit file identifier = 32 bit RVID + 64 bit file handle

24.2.5 Server Replication

Figure 24.5: Server replication issues in Coda



Lecture 24: May 08 24-5

Assume there are 3 servers and 2 clients connected over a network. In an ideal situation, the servers keep the
copies of the files consistent. If there is a partition in the network, the servers no more have the same copy
of the files. When network partition is fixed, the servers try to synchronize the files. If the files are different,
there may not be any problems. Problem arises if the servers access the same files due to write-write conflicts.

• Use replicated writes: read-once write-all

– Writes are sent to all AVSG(all accessible replicas)

• How to handle network partitions?

– Use optimistic strategy for replication

– Detect conflicts using a Coda version vector

– Example: [2, 2, 1] and [1, 1, 2] is a conflict =¿ manual reconciliation

Question: What is the size of the version vector?
Answer: The number of entries in the version vector is equal to the number of servers that have the copy
of the file.

Question: If the file is being updated multiple times will the system keep incrementing the version?
Answer: It is possible. It will still give rise to the same kind of conflict.

Question: What does manual reconciliation mean?
Answer: It means that the user has to manually resolve the conflicts in the same way as the user is required
to resolve merge conflicts in Git.

24.2.6 Disconnected Operation

Hoarding state means the client is connected to the server and is actively downloading files into cache based
on some prediction based on current usage of the user. Upon disconnecting the client is in emulation state.
Upon reconnecting to the server, the client is in reintegration state. The clients merge its updates with
server’s updates.

Figure 24.6: Disconnected operation in Coda

• The state-transition diagram of a Coda client with respect to a volume.

• Use hoarding to provide file access during disconnection.

– Prefetch all files that may be accessed and cache(hoard) locally

– if AVSG=0, go to emulation mode and reintegrate upon reconnection



24-6 Lecture 24: May 08

24.2.7 Transactional Semantics

• Notwork partition: part of network isolated from rest

– Allow conflicting operations on replicas across file partitions

– Reconcile upon reconnection

– Transactional semantics =¿ operations must be serializable

∗ Ensure that operations were serializable after thay have executed

– Conflict =¿ force manual reconciliation

24.2.8 Client Caching

• Cache consistency maintained using callbacks

24.3 xFS

24.3.1 Overview of xFS

Figure 24.7: An example of nodes in xFS

• Key Idea: fully distributed file system [serverless file system]

– Remove the bottleneck of a centralized system

• xFS: x in ”xFS” = no server

• Designed for high-speed LAN environments

XFS combines two main concepts ; RAID - Redundant Array of Inexpensive Disks) and Log Structured
File Systems (LFS). It uses a concept of Network Stripping and RAID over a network wherein, a file is
partitioned into blocks and provided to different servers. These blocks are then made as a Software RAID
file by computing a parity for each block which resides on a different machine.

In log structured File systems, data is sequentially written in the form of a log. The motivation for LFS
would be the large memory caches used by the OS. Larger, the size of cache, more the number of cache hits
due to reads, better will be the payoff due to the cache. The disk would be accessed only if there is a cache
miss. Due to the this locality of access, mostly write requests would trickle to the disk. Hence, the disk
traffic comes predominantly from write. In traditional hard drive disks, a disk head read or writes data .



Lecture 24: May 08 24-7

Hence, to read a block, a seeks needs to be done i.e. move the head to the right track on the disk.

How to optimize a file system which sees mostly write traffic ?

The basic insight is to reduce the time spent on seek and waiting for the required block to spin by. Every
read/write request incurs a seek time and a rotational latency overhead. In general , random access layout
is assumed for all blocks in the disk wherein the next block is present in an arbitrary location. This would
require a seek time.

To eliminate this, a sequential form of writing facilitated by LFS can be used. The main idea of LFS is
that we try to write all the blocks sequentially one after the other. Thus LFS essentially buffers the writes
and writes them in contiguous blocks into segments in a log like fashion. This will dramatically improve the
performance. Any new modification would be appended at the end of the current log and hence, overwriting
is not allowed. Any LFS requires a garbage collection mechanism to de-fragment and clean holes in the log.

Hence, XFS ensures 1. fault tolerance - due to RAID, 2. Parallelism - due to blocks being sent to multiple
nodes. 3. High Performance - due to Log structured organization.

In SSD’s, the above mentioned optimization to log structures doesn’t give any benefits since there are no
moving parts and hence, no seek.

Question: Is there an overhead to maintain lookup as block of the files need to be tracked?
Answer: There is higher overhead to maintain the lookup. For every write, the data gets appended, so it
is meant to be for high write workloads. Metadata of the files is also written to the log. In case of lookups,
the metadata has to be accessed. Hence there is high overhead.

Question: Can the writes be cached?
Answer: Reads are directly cached. Writes are cached in batches i.e. a batch of writes are written as an
append-only log.

Question: Is LFS one server?
Answer: LFS are traditionally designed as single disk system. Here, they are combined with xFS. The logs
are stripped across machines.

24.3.2 xFS Summary

• Distributes data storage across disks using software RAID and log-based network striping
-RAID = Redundant Array of Independent Disks

• Dynamically distribute control processing across all servers on a per-file granularity
- Utilizes serverless management scheme.

• Eliminates central server caching using cooperative caching
- Harvest portions of client memory as a large, global file cache.

24.3.3 Array Reliability

• Reliability of N disks = Reliability of I Disk ÷ N
50, 000 Hours ÷ 70 disks = 700 hours
Disk system MTTF:Drops from 6 years to I month!



24-8 Lecture 24: May 08

• Arrays(without redundancy) too unreliable to be useful!

24.4 RAID

24.4.1 RAID Overview

• Basic idea: files are ”striped” across multiple disks

• Redundancy yields high data availability
- Availability: service still provided to user, even if some components failed

• Disks will still fail

• Contents reconstructed from data redundantly stored in the array
- Capacity penalty to store redundant info
- Bandwidth penalty to update redundant info

24.4.1.1 RAID

RAID stands for Redundant Array of Independent Disks. In RAID based storage, files are striped across
multiple disks. Disk failures are to be handled explicitly in case of a RAID based storage. Fault tolerance is
built through redundancy.

Figure 24.8: Striping in RAID

Figure 24.8 shows how files are stored in RAID. d1,...d4 are disks. Each file is divided into blocks and stored
in the disks in a round robin fashion. So if a disk fails, all parts stored on that disk are lost. It has an
advantage that file can be read in parallel because data is stored on multiple disks and they can be read at
the same time. Secondly, storage is load balanced. If a file is popular and is requested more often, the load
is evenly balanced across nodes. This also results in higher throughput.

A disadvantage of striping is failure of disks. The performance of this system depends on the reliability of
disks. A typical disk lasts for 50,000 hours which is also knows as the Disk MTTF. As we add disks to the
system, the MTTF drops as disk failures are independent.

Reliability of N disks = Reliability of 1 disk÷N



Lecture 24: May 08 24-9

We implement some form of redundancy in the system to avoid disadvantages caused by disk failures.
Depending on the type of redundancy the system can be classified into different groups:

24.4.1.2 RAID 1 (Mirroring)

From figure 24.9, we can see that in RAID 1 each disk is fully duplicated. Each logical write involves two
physical writes. This scheme is not cost effective as it involves a 100% capacity overhead.

Figure 24.9: RAID 1

24.4.1.3 RAID 4

Figure 24.10: RAID 4

This method uses parity property to construct ECC (Error Correcting Codes) as shown in Figure 24.10. First
a parity block is constructed from the existing blocks. Suppose the blocks D0, D1, D2 and D3 are striped
across 4 disks. A fifth block (parity block) is constructed as:

P = D0 ⊕D1 ⊕D2 ⊕D3 (24.1)

If any disk fails, then the corresponding block can be reconstructed using parity. For example:

D0 = D1 ⊕D2 ⊕D3 ⊕ P (24.2)

This error correcting scheme is one fault tolerant. Only one disk failure can be handled using RAID 4. The
size of parity group should be tuned so as there is low chance of more than 1 disk failing in a single parity
group.

Question: Where is the information about which files are on which disk?
Answer: The hardware controller serves the request internally to identify which blocks are stored on which
disk.



24-10 Lecture 24: May 08

Question: In RAID, hardware controller keeps a track of data blocks and parity, what happens if controller
fails?
Answer: There will be problems in accessing the disk. That may be a point of failure. In case of Software
RAID this issue will not occur.

Question: Won’t the cost of accessing files increase since all disks are being accessed?
Answer: There are two ways to access a file, either block by block or accessing the whole file. If a request
is made to access the whole file, in the above figure, eight requests to different disks would have been made,
making it parallel. If the entire file would have been saved on the same disk, it would have resulted in eight
requests being made to the single disk, which makes it sequential. Thus, accessing multiple disks does not
necessarily make it expensive.

24.4.1.4 RAID 5

Figure 24.11: RAID 5

One of the main drawbacks of RAID 4 is that all parity blocks are stored on the same disk. Also, there are
k + 1 I/O operations on each small write, where k is size of the parity block. Moreover, load on the parity
disk is sum of load on other disks in the parity block. This will saturate the parity disk and slow down entire
system.

In order to overcome this issue, RAID 5 uses distributed parity as shown in Figure 24.11. The parity blocks
are distributed in an interleaved fashion.

Note: All RAID solutions have some write performance impact. There is no read performance impact.



Lecture 24: May 08 24-11

RAID implementations are mostly on hardware level. Hardware RAID implementation are much faster than
software RAID implementations.

24.4.2 xFS uses software RAID

• Two limitations

– Overhead of parity management hurts performance for small writes

∗ Ok, if overwriting all N-1 data blocks

∗ Otherwise, must read old parity+data blocks to calculate new parity

∗ Small writes are common in UNIX-like systems

– Very expensive since hardware RAIDS add special hardware to compute parity

24.4.3 Log-structured FS

• Provide fast writes, simple revovery, flexible file location method

• Key Idea: buffer writes in memory and commit to disk in large, contiguous, fixed-size log segments

– Complicates reads, since data can be anywhere

– Use per-file inodes that move to the end of the log to handle reads

– Uses in-memory imap to track mobile inodes

∗ Periodically checkpoints imap to disk

∗ Enables ”roll forward” failure recovery

– Drawback: must clean ”holes” created by new writes

24.4.4 Combine LFS with Software RAID

Log written sequentially are chopped into blocks which a parity groups. Each parity group becomes a server
on a different machine in a RAID fashion

24.5 HDFS - Hadoop Distributed File system

It is designed for high throughput - very large datasets. It optimizes the data for batch processing rather
than interactive processing. HDFS has a simple coherency model in which it assumes a WORM (Write Once
Read Many) model. In WORM, file do not change and changes are append-only.

24.5.1 Architecture

There are 2 kinds of nodes in HDFS ; Data and Meta-data nodes. Data nodes store the data whereas,
meta-data keeps track of where the data is stored. Average block size in a file system is 4 KB. In HDFS, due
to large datasets, block size is 64 MB.Replication of data prevents disk failures. Default replication factor
in HDFS is 3.



24-12 Lecture 24: May 08

24.6 GFS - Google File System

Master node acts as a meta-data server. It uses a file system tree to locate the chunks (GFS terminology for
blocks). Each chunk is replicated on 3 nodes. Each chunk is stored as a file in Linux file system.

24.7 Object Storage Systems

• Use handles(e.g., HTTP) rather than files names

– Location transparent and location independence

– Separation of data from metadata

• No block storage: objects of varying sizes

• Uses
- Archival storage

– can use internal data de-duplication

- Cloud Storage: Amazon S3 service

– uses HTTP to put and get objects and delete

– Bucket: objects belong to bucket/partitions name space


